Electronic Spectrum and **d**-Orbital Energies of the Planar CuCl²⁻ Ion **in Bis(creatininium) Tetrachlorocuprate**

By **MICHAEL A. HITCHMAN**

(Chemistry Department, University of Tasmania, Box 252C, Hobart, Tasmania **7001,** *Austvalia)*

Summary The low temperature, polarized electronic spectrum of the (100) crystal face of (creatininium)₂CuCl₁ is reported and interpreted in terms of a d-orbital energy s reported and interpreted in terms of a *u*-orbital energy
sequence d_{x2-y2} $>$ d_{xy} $>$ d_{xz} $>$ d_{yz} $>$ d_{z2} for the planar $CuCl₄²⁻$ ion present in this compound; the marked temperature dependence of the spectrum and its comparison with that of the similar compound (PhCH₂CH₂-NH,Me),CuCl, suggests that coupling both with lattice modes and an out-of-plane bonding mode of very low energy is important in the mechanism by which the electronic transitions gain intensity in compounds of this kind.

THE electronic spectrum of planar CuCl₄²⁻ is of particular interest as the energy levels of this ion have been the subject of numerous theoretical studies, both of a sophisticated nature^{1,2} and in testing simple models of the bonding in transition metal complexes.³ Until recently, however, the only compound known to contain this ion with no axial ligand interaction was $(PhCH_2CH_2NH_2Me)_2CuCl_4$, $(nmph)₂CuCl₄$.⁴ The electronic spectrum of this complex suggested d-orbital energies in agreement with simple theory except that the d_{z2} orbital was *ca.* 5000 cm⁻¹ lower in energy than expected, this being rationalized in terms of the configuration interaction with the metal 4s orbital expected in a planar, truly 4-co-ordinate complex.⁵ The spectrum was also unusual in showing extensive vibrational fine structure at low temperatures,^{$6,7$} some of which was attributed to coupling with what are formally lattice modes.' However, the spectral analysis was hampered by the unfortunate crystal packing of the $CuCl₄²⁻$ groups, which did not allow the clear resolution of the crystal spectra into their molecular components. Recently, the

crystal structure of a second compound containing planar $CuCl₄²⁻ ions, (creation inium)₂CuCl₄, has been reported.⁸ The$ dimensions of the CuCl $_{4}^{2-}$ unit in this compound are virtually identical to those in $(nmph)₂CuCl₄$. Moreover, ligand interactions orthogonal to the plane of the complex in $(creation inium)₂CuCl₄$ are confined to two very distant oxygen atoms (Cu-0 distances **3-64** A) and the crystal packing allows the molecular spectra to be resolved quite readily. This compound therefore provides an ideal means **of** investigating the energy levels in simple systems such as $CuCl_a²$, and how these are affected by the environment of the surrounding lattice and the presence of very distant axial ligands.

Green crystals of (creatininium)₂CuCl₄ were prepared by the method of Udopa and Krebs⁸ and had a satisfactory analysis. The compound crystallized with the **(100)** face well developed and electronic spectra were recorded over a temperature range using a Cary **17** spectrophotometer with the electric vector of light parallel to the *b* and c crystal axes. Typical spectra are shown in the Figure.

FIGURE. Electronic spectrum of the (100) crystal face of (creatininium),CuCl, measured at **290** and **8** K with the electric vector of light parallel to the b $(----)$ and c $(----)$ crystal axes.

The complex crystallizes in the spacegroup *P2,/c* with the unit cell parameters $a = 8.080$, $b = 7.831$, $c =$ 13.922 Å, and $\beta = 113.77^{\circ.8}$ The CuCl₄²⁻ ion in (creati $ninium)_2$ CuCl₄ is rigorously centrosymmetric with Cu-Cl bond lengths of **2-233** and **2.268** *8,* and Cl-Cu-C1 angles of 89.9 and 90.1° . The complex thus belongs to the D_{2h} point group, with the departure from D_{4h} symmetry being due to the slight difference between the Cu-C1 bond distances. **A** molecular co-ordinate system was defined with x and y parallel to the shorter and longer Cu-Cl bonds and *z* orthogonal to these. The squares of the molecular projections made by a unit vector along the *b* and c crystal axes are $0.98x^2 + 0.01y^2 + 0.01z^2$ and $0.00x^2 +$ $0.04y^2 + 0.96z^2$, respectively, so that the *b* and *c* crystal spectra (Figure) correspond almost exactly to the *x* and *z* molecular spectra. The vibronic selection rules for a copper(II) complex with D_{2h} symmetry and a ${}^2A_g(x^2 - y^2)$ ground state are that transitions to the ${}^{2}B_{1g}(xy)$, ${}^{2}B_{2g}(xz)$,

and ${}^{2}B_{3g}(yz)$ states are forbidden in *z*, *y*, and *x* polarization, respectively (the d-orbital containing the unpaired electron being indicated in parentheses). The spectra at 8 K show peak maxima at 12,500, 13,840, and 16,530cm-l in *x* polarization and 14,185 and 16,390 cm-l in *z* polarization. The selection rules therefore clearly suggest that the lowest energy peak is due to the transition ${}^2B_{1g}(xy) \leftarrow {}^2A_g(x^2 - y^2)$. Since the departure from D_{4h} symmetry is small the ${}^{2}B_{2g}(xz)$ and ${}^{2}B_{3g}(yz)$ states are expected to occur close together, with the latter slightly higher in energy because of the stronger ligand perturbation along the *x* axis. As the central peak occurs at $13,840 \text{ cm}^{-1}$ in *x* polarization when the transition ${}^2B_{2g}(xz) \leftarrow {}^2A_g(x^2 - y^2)$ is allowed, and 14,185 cm-l in *z* polarization when both this transition and that to the ${}^{2}B_{3g}(yz)$ state are allowed, this is consistent with the ${}^{2}B_{20}(xz)$ state lying at 13,840 cm⁻¹ and the ${}^{2}B_{3q}(yz)$ state being at *ca*. **14**,530 cm⁻¹. The highest energy peak is then assigned to the transition ${}^2A_g(z^2) \leftarrow {}^2A_g(x^2 - y^2)$.

The excited state energies of (creatininium)₂CuCl₄ are quite similar to those in $(nmph)₂CuCl₄$ $[^{2}B_{1g}(xy) = 12,500$ cm⁻¹, ${}^{2}B_{2g}(xz) = 14{,}050 \text{ cm}^{-1}$, ${}^{2}B_{3g}(yz) = 14{,}450 \text{ cm}^{-1}$, $^{2}A_{g}(z^{2})$ = 17,000 cm⁻¹],⁶ the observed sequence of *d*orbitals agreeing with some theoretical calculations1 but not with others.² The values $E(xy)$ **12,500** cm⁻¹ and $E(xz,yz)$ *ca.* **14,200** cm⁻¹ suggest angular overlap parameters e_{σ} *ca.* 5300 cm⁻¹ and e_{π} *ca.* 850 cm⁻¹ for Cl⁻¹ towards Cu^{II} in these complexes.⁹ The high energy of the ${}^2A_g(z^2)$ state in planar complexes of this kind has been rationalized in terms of configuration interaction between the $a_{1g}(z^2)$ and $a_{1a}(4s)$ orbitals.⁵ The magnitude of this depends on the difference in ligand interaction along the *z* and *(xy)* axes, which, because of the diffuse nature of the 4s orbital, is only expected to be significant when the axial bonds are very long or entirely absent as in $(nmph)₂CuCl₄$. In (creatininium) ₂CuCl₄ the ² $A_a(z^2)$ state is 600 cm⁻¹ lower in energy than that in $(nmph)₂CuCl₄$, which may indicate a weak interaction with the axial oxygen atoms (Cu-0 distance **3.64** A) in the former compound. This would correspond to a decrease of *ca. SY,* in the magnitude of the coefficient of the $4s$ orbital in the $a_g(z^2)$ wavefunction⁵ of (creatininium),CuCl, compared with the value of *ca.* **0.25** estimated⁷ for $(nmph)₂CuCl₄$.

The low-temperature spectrum of (creatininium),CuCl, differs markedly from that of $(nmph)₂CuCl₄$ in that it contains virtually no evidence of the extensive vibrational fine structure observed^{6,7} for the latter compound. Only the lowest energy peak shows a barely discernible progression, the spacing of ca . 260 cm⁻¹ being similar to those observed in $(nmph)₂CuCl₄$ and suggesting that it involves excitation of the *alg* symmetric stretching mode. Since the geometries of the CuCl₄²⁻ groups in the two compounds are virtually identical, this agrees with the supposition⁷ that in $(nmph)₂CuCl₄$ coupling with what are formally lattice modes plays an important part in the vibronic intensity mechanism. As with $(nmph)₂CuCl₄$, the spectral peaks of $(creation inium)₂CuCl₄$ show marked decreases in intensity on cooling, and significant shifts of the band maxima to higher energy. The ${}^2A_a(z^2) \leftarrow {}^2A_a(x^2 - y^2)$ transition is quite exceptional in this respect, the band maximum shifting by $ca. 1000 \text{ cm}^{-1}$. The crystal structure indicated an anomalously large temperature factor perpendicular to the CuCl₄²⁻ plane for the chlorine atoms in (creatininium)₂- $CuCl₄$, suggesting either an out-of-plane bending mode of very low energy or a slight distortion towards a tetrahedral geometry, possibly dynamic in nature.8 The excited state energies suggest that no tetrahedral distortion is present, at least at 8 K. The marked temperature dependence is consistent with the out-of-plane bending made of b_{2u} symmetry in the D_{4h} point group being active in inducing intensity and having a very low energy (much of the intensity in the spectrum of $(nmph)₂CuCl₄$ was also found to be derived from this mode, the energy in this case being $ca. 100 \text{ cm}^{-1}$).⁷ It is hoped to clarify this point by making a detailed study of the electronic spectra of several crystal faces of (creatininium)₂CuCl₄ in the near future.

The financial support of the Australian Research Grants Committee is gratefully acknowledged, as is the loan of a Cryodyne 21 cryostat from the Central Science Laboratory of the University of Tasmania.

(Received **11th** *July* **1979;** *Corn.* **747.)**

- P. Ros and G. C. **A.** Schuit, *Theor. Chim. Acta,* **1966, 4, 1** ; **J** Demuynek, **A.** Veillard, and **U.** Wahlgren, *J. Amer. Chem. Soc.,* **1973, 95, 5563.**
- *ibid.,* **1971, 8, 327;** D. W. Smith, *J.C.S. Dalton,* **1973, 1853.** ² J. Demuynek and A. Veillard, *Chem. Phys. Letters*, 1970, 6, 204; N. J. Trappeniers, G. de Brouchière, and C. A. Ten Seldam,
	- For a recent discussion of chlorocuprate(I1) complexes see D. W. Smith, *Co-ordination Chem. Rev.,* **1976, 21, 93.**
	- **R. L.** Harlow, W. J. Wells, **111,** G. W. Watt, and S. H. Simonsen, *Inorg. Chem.,* **1974, 13, 2106.** D. W. Smith, *Inorg. Chim. Ada,* **1977, 22, 107.**
	-
	- P. Cassidy and **M. A.** Hitchman, *J.C.S. Chern. Comm.,* **1975, 837.** M. **A.** Hitchman and P. Cassidy, *Inorg. Chem.,* **1979, 18, 1745.**
	-
	- * **M.** R. Udopa and B. Krebs, *Inorg. Chim. Ada,* **1979, 33, 241.**
	- D. W. Smith, *Structure and Bonding,* **1978, 35,** *87.*